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These appendixes contain three sets of results. In Appendix B, we include some theo-
retical tools we use to prove Lemma 1: Topkis’s theorem and stochastic dominance. In
Appendix C, we show by example the key role of exclusion restrictions in our analysis. In
Appendix D, we extend our identification results to the case of three or more goods or
players.

APPENDIX B: MONOTONE COMPARATIVE STATICS

The proof of Lemma 1 relies on Topkis’ theorem and the concept of stochastic domi-
nance.

Torxis’ THEOREM (Topkis (1998)). Let f (a1, az, x) : A1 x Ay x R — R, where Ay and A;
are finite ordered sets. Assume that f(ay, az, x) (i) is supermodular in (a1, a) and that
(ii) it has increasing differences in (a1, x) and (ay, x). Then argmax{f(ay, az, x) | (a1, ay) €
A1 x Ay} increases in x with respect to the strong set order." (According to this order, we
write A >g B if for everya € Aand b € B, we havethata~v be Aanda nb € B.)

The concept of first order (or standard) stochastic dominance (FOSD) is based on
upper sets. Let us consider ({2, >), where (2 is a set and > defines a partial order on it. A
subset U C 2 is an upper setif x € U and x’ > x imply x' € U.
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1For any two elements a, a’ € A; x A, we write a v a’ (a A a') for the least upper bound (greatest lower
bound). We say f(ay, az, x) is supermodular in (ay, ay) if, for all a, a’ € A} x A,

flavd,x)+fland,x)=f(a,x)+ f(d,x).
We say that f(aq, az, x) has increasing differences in (a1, x) if, for all a/1 >ay and x’ > x,

f(dy, a2, x') = f(a1, a2, x') = f(a}, a2, x) — f(a1, az, x).
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First order stochastic dominance

Let X', X € R” be two random vectors. We say X’ is higher than X with respect to first
order stochastic dominance if, for all upper sets U C R”,

Pr(X e U)=Pr(X € U).

APPENDIX C: NONIDENTIFICATION WITHOUT EXCLUSION RESTRICTIONS

We show using a simple example that we cannot recover the joint distribution of unob-
servables F (&1, &) without the exclusion restrictions, captured by the roles of Z; and Z;
in
Ula,W,Z,e,m) = Z (wi(W)+ Zi+ &) -ai+n-v(W)-ay - ay. (A.1)
i=1,2
To this end, assume that Z; = Z, = Z, where Z is a scalar random variable. Thus Z is not
an excluded variable.

We focus on a simpler version of our model. Specifically, we drop W and assume
both no interaction effects and zero homogeneous stand-alone payoffs. That is, the re-
searcher knows that n - v =0, u; =0, and u, = 0. Because 7 - v =0, the distribution of
7 is not identified and indeed is not an interesting object to recover. If F(&q, £7) is not
identified under these strong conditions, then it is not identified if we allow for v, u;, and
uy to differ from zero. Under these conditions, the choice probabilities simplify to

Pr((1,1)|z) =Pr(e1 > —z, 80> -z 2),
Pr((0,0) | 2)
( )

)

Pr((1,0) | z
Pr((0,1) | z) =Pr(e1 < —z,60> —z | 2).

= Pr(81 = —Z,& <-z | Z)a

=Pr(e1 2 ~z,60<-2]|2),

In this case, choice probabilities in the data only reveal the probability that the unob-
servables (1, £7) belong to rectangles with the common vertex (—z, —z). Note that if Z
has large support, then the marginal distributions of ¢; and &, are immediately identi-
fied by treating the decisions to buy items 1 and 2 as separate binary choice problems
(Manski (1988)). This approach is possible as we assumed 7 - v is 0. Because the marginal
distributions are identified, the nonidentification of F(e1, &) must arise from the cop-
ula linking the two marginals to create the joint distribution F (&1, &2)—which exists by
Sklar’s theorem.

We show the nonidentification of F(e1, £;) by describing two different joint distribu-
tions, with the same marginals, that give the same choice probabilities. Let F' (&1, £;) be
the CDF of a uniform distribution on [—1, 1] x [—1, 1], which has a probability density
function (p.d.f.) of 1/4 on [—1, 1] x [—1, 1]. The choice probabilities for each z € [—1, 1]
sum up to 1 and are given by

Pr((1,1)|z)=Pr(s1z—z,szz—zlz)=(1+z)-(1+z)~%,
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Pr((O,O)|z)=Pr(815—2,825—z|z)=(1—z)-(1—z).%,
Pr((l,O)|z):Pr(sl2—2,82§—z|z)=(1+z)'(1—z)-%,
Pr((O,l)|z):Pr(sl5—2,822—z|z)=(1—z)o(1+z)-%.

Let us next construct F2(eq, ;) from Fl(eq, &3) by shifting mass uniformly from each
half-quadrant triangle to the next one clockwise, so that, under F 2(e1, &),
Pr(e;>€1,0<e1<1,0<e&<1)=0 and
Pr(ez<e1,0<e1<1,0<e,<1)=1/4,
Pr(—e; <e1,0<e<1,-1<e<0)=0 and
Pr(—e;>¢1,0<e1<1,-1<6=<0)=1/4,
Pr(—e; <—&7,-1<£<0,-1<&<0)=0 and
Pr(—e;1 > —&y,—1<e1<0,-1<¢g=<0)=1/4,
Pr(—e1>6,—1<61<0,0<e<1)=0 and
Pr(—e1<ep,-1<61<0,0<eg<1)=1/4.
Because the shift is uniform, the p.d.f. of (¢1, &;) in the region of positive probability is
1/Z‘We next show that while F2(eq, &) differs from Fl(eq, &2), they generate the same
choice probabilities in the data; a similar argument can be used to show that they share
the same marginals. The choice probabilities utilize the formula for the area of a right

triangle, % times base times height. The choice probabilities under F(e1, ;) if z <0 (or
—z>0) are

Pr((1,1)|2)=Pr(s1Z—z,szz—ZIZ)=W%=(1+Z)-(1+Z)-%,
Pr((0,0)|z) =Pr(e; < —z,81 < —2| 2)

1, 991 emy. L
=7+ 5 sHA+2)(=2) 5+

(=2)-(=2) 1 4 (=2)-(=2) 1
2 2 2 2

=(1—z)~<1—z)-%,

Pr((l,O)|Z):P1‘(812—2,825—Z|Z):(1+Z)~(—Z)~%+W~%
1
=(1+Z)'(1—Z)'Z,
Pr((O,l)|z):Pr(sl5—z,szz—z|z)=(1+z)~(—z)~%+W~%

:(1—z)~(1+z)-%.



4 Fox and Lazzati Supplementary Material

The algebra for the case where z > 0 (or —z < 0) is similar, so we omit it. Since two differ-
ent CDFs Fl(gq, £2) and F% (&1, &3) generate the same choice probabilities for all z, the
joint distribution of &1, £, cannot be uniquely recovered from the data.

APPENDIX D: THREE OR MORE GOODS AND PLAYERS
D.1 Identification results for a general model

Consider an agent who faces V' = {1, 2, ..., n} binary choice variables that are not mu-
tually exclusive. Thus, her choice set is {0, 1}". We define a = (a;);<x.

If the agent selects only variable i, then her payoffis u; (W) + Z; + ¢;, where W ¢ R is
avector of explanatory variables and ¢ = (¢;);<, € R” indicates a vector of random terms
distributed according to F, v, 7 that is observed by the agent but not by the econometri-
cian. We define Z = (Z;);<,, where Z; isascalarfori =1, 2, ..., n. As before, Z represents
the excluded variables. We write S(a) = {i € N : a; = 1} for the set of variables that are ac-
tually selected if vector a is chosen. The agent selects the action profile a to maximize
her utility,

Ula,W,Z, &)= (wi(W)+ Zi+ &) - a;i +v(S(a), W), (A.2)
1<n
where v(S(a), W) is the interaction effect between the selected variables. This specifica-
tion allows the interaction term to vary with the items selected. We normalize v(S(a), W)
so that it is 0 when |S(a)| < 2 and let the overall utility be 0 if a = (0, ..., 0) is chosen.
Our purpose is to identify ((#;)i<n, v, Feyw,z) from available choice data Pr(a | w, z).
We next provide the set of identifying restrictions. Let Z_; be all excluded explanatory
variables other than that for the binary variable i.

Bl. Theterm Z; | W, Z_; has supportonallRfori=1,2,...,n.
B2. We have (i) F,z = Foyw and (i) E(s | W) = (0,0, ..., 0).
B3. The term ¢ | W has an everywhere positive Lebesgue density on its support.

B4. For each W = w, there exists a known vector a% < {0,1}" with the follow-
ing property: For all z and ¢, U(a, w, z, €) is maximized at a" if U(@},a";, w, z, &) >
U(a;,a%;,w, z,¢) foralli e N, where a; =1 —a’.

We do not allow for heterogeneity in the interaction terms in the multiple binary
variables model. In addition, we need to add B4. This assumption requires the existence
of a vector of choices (known by the econometrician) such that if the vector is a local
maximizer, then it is a global maximizer as well. We provide sufficient conditions for B4
below.

TreoreM D.1. Under B1-B4, ((u;(-))i<n, v(-), Fow) is identified.

The proof of Theorem D.1, in Appendix D.4 below, first uses condition B4 to trace
Fgw using variation in Z. We then use the known F,» to show—via contradiction—
that there exist realizations of Z where different values of ((u;);<, v) lead to different
bundle choice probabilities.

The next four conditions are sufficient for assumption B4 to hold.
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Two binary variables. Assumption B4 always holds if there are two choice variables,
so that B4 in this case is not stronger than the analysis in the main text. If B1-B3 are
satisfied, then, by Lemma 1, the sign of v(w) = v((1, 2), w) is identified for each W = w.
It can be easily shown that B4 holds with ¥ = (1, 0) or a¥ = (0, 1) when v(w) > 0 and
a% =(0,0) ora* =(1,1) when v(w) <0.

Negative interaction effects. The second sufficient condition relies on the items be-
ing substitutes. This holds if U(a, w, z, ) has the negative single-crossing property in
(aj; a_;) foralli e N; that s, if, for all @’ ; > a_; (in the coordinatewise order) and w, z, &,
we have

U@i=1,a,w,z,&)-U(a;=0,a_;,w,z,&) <(<)0 =

U(aj=1,d" ;,w,z,e) = U(a; =0,d"_;, w, z, &) < (<)0.

—1° —I°
In this case, B4 holds with a* = (0, 0, ..., 0) for each w.

Positive or mixed interaction effects. The third sufficient condition applies to the case
where the binary variables are all complements or the interaction effects have different
signs. Though this result extends to the case of an arbitrary (finite) number of binary
choice variables, we present the sufficient condition for the case of three to simplify the
exposition. In this case, B4 holds with a* = (1, 0, 0) for each W = w if

v((1,2), w) >0,

v((l, 3), w) >0,
v((1,2), w) +v((1,3),w) = v((2,3), w),
v((1,2), w) +v((1,3), w) = v((1,2,3), w).

The first two conditions require that binary variable 1 be a complement with each
of the other two variables. The third condition requires that the sum of the interaction
effects among variable 1 and the other two be larger than the interaction effect between
the latter; notice that this condition always holds if the choice variables 2 and 3 are
mutual substitutes. The last condition is a subadditivity condition. Though we selected
choice variable 1, the same idea applies if the leading choice variable is either 2 or 3.

Global concavity for discrete domains. Assumption B4 is a local notion of concavity for
discrete domains. Thus, it also holds under a global analog of discrete concavity; that is,
if, for all a, a’ € {0, 1}" with |la — a'|| = 2,

>min{U(a,w, z, &), U(d',w, z, £)},
ifU(a,w,z,8)#U(d,w,z,¢),

U //’ b b
(@, 0,2,¢) >U(a,w,z,8)=U(d,w, z, &),

max
a’:la—a"|=lla'—a"||=1

otherwise.

In this case, B4 holds with any a® € {0, 1}" for each w.
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A formal proof that global concavity implies B4 can be found in Ui (2008); the latter
refers to our condition as the larger midpoint property. Global concavity imposes non-
trivial restrictions on the cross-effects of multivariate functions and, in our model, the
support of unobservables and explanatory variables. In particular, if the unobservables
and explanatory variables can take values on the entire real line, then the interaction ef-
fects must be identically zero for concavity to hold globally. Thus, this requires B1 to be
relaxed. For this reason, we cannot recommend basing identification on global concav-
ity explicitly. However, assumption B4 itself can be thought of as a weaker (local) version
of discrete concavity that is compatible with our other restrictions.

D.2 n-Goods bundle model

Consider an agent who decides whether to buy each of n possible goods. The consumer
selects the combination of goods a = (ay, ay, ..., a,) € {0, 1}" that maximizes

U(a,W,p,e,m)= Z(ui(W) — pi+&i)-ai+v(S(a), W).

i<n

This model allows the signs of the interaction effects to depend on the identity of all the
acquired goods. The model is identical to the previous model if we treat prices as the
exclusion restrictions.

CoRoOLLARY D.1. If Z = (— pi)i<n, identification of the bundles model follows from The-
orem D.1.

D.3 n-Players potential game

Consider an extension of the game in Section 2.3 to N = {1, ..., n} players. Each player
i € N chooses an action a; € {0, 1}. The payoff of player i from choosing action 1 is

Uita_i, W, Z, g)) =ui(W) + Zi + si + vi(a_;, W), (A.3)

while the return from action 0, Uy ;(a_;, W, Z, ¢;), is normalized to 0. In addition, we
normalize v;(a_;, W) to 0 when the actions of all players but i are 0. We denote this game
by I'(W, Z, &). The definition of a pure strategy Nash equilibrium a* = (a});<, naturally
extends from the two-player case. The same conditions that facilitate identification of
the game guarantee that its equilibrium set (in pure strategies), D(w, z, ¢), is nonempty.

We want to recover ((u;, v;)i<n, Fejw,z) from the available distribution of equilibrium
choices Pr(a | w, z). We next show that by restricting attention to the class of potential
games and relying on the equilibrium selection rule based on potential maximizers, then
identification of the game is mathematically equivalent to identification of the model
studied at the beginning of this appendix. The theoretical arguments of Ui (2001) and
most of the laboratory evidence cited for why players might coordinate on the potential
maximizer in Section 2.3 are not specific to two-player games.



Supplementary Material Identification of discrete choice models 7

A function U : {0, 1}" x Rk x R” > Risa potential function for I'(w, z, ¢) if, for each
i<nandalla_; €{0,1}* 1,

U(ai = 1, a—i,w,z, 8) - U(al = 05 a—j,w,z, 8) = Ul,i(a—i7 w, z, 8i)'

The function I'(w, z, ¢) is a potential game if it admits a potential function. Let us
write

S(@)={SCS(@|IS1=2} and S(a,i)={SCS@a)|IS|>2,ic5},

where S(a) is the set of players who select action 1 in the action profile a. The notation
S(a, i) returns the empty set when a; = 0. Ui (2000, Theorem 3) shows that I'(w, z, &) isa
potential game if and only if there exists a function

[0S, w, 2) | 5(S,w, 2) : N x R¥ > R, |S] > 2}
such that, for each i e N and all a4 € {0, 1}",

Uri(a,w,z, &) =u;(w)+z; + & + Z (S, w, z).
SeS(a,i)

A potential function is given by

Ula,w,z,8) = Y _(ui(w) + zi + &) - a; + v(S(a), w, z)
ieN
with v(S(a), w, z) = Z (S, w, ).
SeS(a)

Briefly, an n-player game admits a potential representation if the interaction terms
are groupwise symmetric. We next present our main result.

CoroLLARY D.2. Ifa binary game admits a potential function and players coordinate on
the potential maximizer, then identification of the game follows from Theorem D.1.

By Theorem D.1, ((#;)i<n, v, Feyw,z) is identified in our initial framework and it is
readily verified that we can recover v from v by a one-to-one change of notation. The
four sufficient conditions provided above for the notion of local concavity in condition
B4 have counterparts for the analysis of the game. That is, the analog to B4 holds in the
game context if one or more of the following conditions are satisfied: there are only two
players; the game is of strategic substitutes; the game is of strategic complements and
there is a leading player who fulfills the required conditions; the potential function is
discrete globally concave.

D.4 Proof of Theorem D.1

We first show that if B1-B4 are satisfied, then F, )y is identified. We then show that if
B1-B3 are satisfied and F, is identified, then ((u;);<x, v) is also identified.
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Identification of Fw. By B4, for each W = w, there exists a known vector a* € {0, 1}"
such that, for any w, z and &, U(a, w, z, ¢) is maximized at @ if U(@},a";,,w, z, &) >
U(a,a";,w, z,¢) forallie N and a; =1 —a}. This condition holds if, for all i e \V,
(1(@"=1) - 1(a}" = 0))e
(A.4)
>v(S(a), w) —v(S(@"), w) — (1@’ =1) — 1@’ =0)) (ui(w) + z;),

where ' is obtained from @" by changing only @}’ and 1(-) is the usual indicator function.
We next recover Fy from variation in z using Pr(a* | w, z). From B4 we get that

Pr(a" | w, z) = Pr((A.4) holds for alli e ' | w, z).
Define the random variable u; for each i € A to be

wi= (1@ =1) - 1@ =0))e;
— (0(S(@). ) ~v(S@"), w) + (1@ =1) 1@ = 0)) (ww).

Let = (u1, ..., un), which is independent of Z conditional on W = w. Therefore,

Pr(a” | w,z) =Pr(u; > —(1(a}’ =1) — 1(@ =0))z; foralli e N' | w, z).

1

We identify the upper probabilities of the vector u, conditional on w, at all points
z=(-(1@’=1) - 1@y =0)z1,...., —(1(@y =1) - 1(@y = 0)) za)-

By the large support in B1 and the fact that z is at most a sign change from z, the random
vector Z, defined in the obvious way, has support on all of R”. Therefore, we learn the up-
per tail probabilities of u conditional on W = w for all points of evaluation u*. Upper tail
probabilities completely determine a random vector’s distribution, so we also identify
the lower tail probabilities of u conditional on w, also known as the joint CDF of u con-
ditional on w. Note that ¢; is the only random variable in w;, conditional on W = w. By
B2(ii), E(e | W) = 0. Therefore, up to the possible sign change in (1(a}’ =1) — 1(@}’ =0)),
the distribution of ¢ conditional on w is identified from the distribution of u — E(u | w)
conditional on w.

Identification of ((u;)i<n,v). Theremaining argument conditions on W = w. Recall the
utility function in equation (A.2). The deterministic portion of utility plays a key role in
the identification argument. Therefore, let

Qa,w, Z) =Y (ui(w) + Zi) - a; + v(S(a), w).
ieN

Our location normalization is that Q(a, w, Z) =0fora = (0,0, ..., 0).
For expositional ease, we order the elements of {0, 1} in terms of the lexicographic
order so that a! = (0,0,...,0), a2 =(1,0,...,0),...,and ¢ = (1,1, ...,1). In addition,
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we define
Ne(d)=> el(a]=1)- > el(a;=1) and
ieN ieN
AjQ(a’, w,Z)=0(d,w,Z) - Q(aj, w, Z).

We indicate by AQ(a’, w, Z) and Ae(a’) the (2" — 1)-dimensional vectors

(0(a'.w.2) ~ Q@ 1, 2)),_yn yy and (Zaﬂ(a{:n_zg,q(a;:n) .
ieN ieN js2al#d

Given this notation, for each «/,
P(AQ(d,w, 2) | w, z; Fo,z:) =Pr(Ae(d)) < A0(d, w, 2) | w, 2)

is the probability of observing the choice vector &’ conditional on W, Z = w, z; that is,
Pr(a’ | w, z). More formally, let Fa .4 w,. be the distribution of Ae(a’). Then

P(AQ(Q/, w, Z) |w, z; Fslw,z)
= / . / I(Ala(a/) < AlQ(a’, w, z)) e I(Azns(a/) < AZ"Q(a/, w, Z)) AFpea)yw,z-

The researcher can identify Pr(a’ | w, z) directly from the data.

Let Q(a, w, Z) # Q(a,w, Z). As Z enters both Q and Q in the same way, this means
that one or more of (u;(w));enr and v(S(a), w) differ across Q and Q for W = w. We
next show that, withoutloss of generality, P(AQ(a’, w, 2) | w, z; Fejw,z) > P(Aé(a’, w, z) |
w, z; Few,z) for some a’ and Z = z, so that Q is identified and we can then recover
((ui)i<n, v). To this end, let

C(w, z)= argmfx{(Q(a, w, z) — O(a, w, 2))|ae{0,1}"}.

Note that by the formulas for (Q(a, w, z) — é(a, w, z)), C(w, z) does not vary with z. Also
suppose max,(Q(a, w, z) — Q(a, w, z)) > 0; the other case follows by a similar argument.
Define D(w, z) ={a ¢ C(w, z) | a € {0, 1}""}. We know C(w, z) # @. The fact that D(w, z) #

¢ follows as
Q(a=(0,0,...,0),w,2) = Q0(a=(0,0,...,0), w,z) =0 (A.5)

and we supposed that max,(Q(a, w, z) — é(a, w, z)) > 0.

Fixsome a’ € C(w, z). We know that Q(a’, w, z) — é(a’, w,z)=Q(a,w,z)— é(a, w, z)
for all a € C(w, z), and Q(d', w, z) — @(a’, w,z) > Q(a,w, z) — Q(a, w, z) for all a €
D(w, z). Rearranging terms,

0(d,w,z) — Qa,w, z) = é(a’, w, z) — O(a,w,z) forallae C(w,z),
Q(d',w,z) — Q(a, w, z) > é(a’, w, z) — O(a,w,z) forallae D(w, z).
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By B2 and B3, the argument in the following paragraphs ensures that we can find z such
that

/ . / 1(ale(d) < 81O, w, 2)) - 182" e(d') < 2 Q(d', w, 2)) dF ey
> / . -~/1(Als(a’) < Alé(a’, w, z)) - ~~1(A2ne(a’) < Azné(a’, W, 2)) dF A s(a)ws

thatis, P(AQ(d', w, 2) | w, z; Fepy) > P(Aé(a/, w, z) | w, z; Fgp). Therefore, Q is noncon-
structively identified at w, and hence ((u;(w));<n, v(w)) is identified as well.

As mentioned previously, we need to find an appropriate value for z. This choice
of z involves an additional detail that we address next. The inequalities that allow us
to show that P(AQ(a’, w, 2) | w, z; Fepw) > P(Aé(a/, w, z) | w, z; Fgpyp) are the ones that
involve a € D(w, z). Some of the inequalities involving a € D(w, z) may be implied
by other inequalities for any z. To see this, suppose there are two substitute items
and let @’ = (0,0), C(w, z) = {(0,0), (1,0), (0, 1)}, and D(w, z) = {(1,1)}. Under substi-
tutes, Q((0,0), w, z) > Q((1,0), w, z) and Q((0, 0), w, z) > Q((0, 1), w, z) together imply
0((0,0),w, z) > Q((1, 1), w, z). In this example, the fact that two inequalities imply a
third means that marginal changes in the interaction term, v, will not affect the proba-
bility of the outcome (0, 0). Therefore, a’ = (0, 0) does not allow us to effectively distin-
guish Q from 0 aswe just claimed. Notice that we assumed (0, 0) € C(w, z), which is not
possible as we are covering the case max,(Q(a, w, z) — Q(a, w, z)) > 0 and (A.5) holds.
The next argument extends this idea.

We now show that there always exists some a” € D(w, z) for which the inequality
Q@d',w,z) = Q(a",w, z) is not directly implied from Q(a’, w, z) > Q(a, w, z) for all a #
a', a”. By contradiction, as we illustrated above, we will show that if this were not true,
then (0,0, ...,0) € C(w, z) which is not possible as max, (Q(a, w, z) — é(a, w, z)) > 0and
(A.5) holds.

For each &’ € C(w, z), there are (at least) n inequalities that are not implied by the
others. These inequalities correspond to vectors of actions that differ from 4’ regarding
one single item. To see this, let a” be equal to a’ except for some item i that is chosen at
a' but not at ¢”. Then Q(d’, w, z) > Q(da”, w, z) if and only if

ui(w) + z + v(S(a’), w) = v(S(a"), w).

All other inequalities Q(a’, w, z) > Q(a, w, z) with a # a’, a” will involve at least an ex-
cluded variable z; with j # i. Thus, we can always find a vector z such that Q(a’, w, z) >
Q(a,w, z)witha #a’,a" and yet Q(a’, w, z) < Q(a”, w, z). Thus, assume a” € C(w, z). By
repeating this process | 4’| times (the number of items being selected in bundle a’), we
need to assume (0,0, ...,0) € C(w, z). But this is not possible, as we explained before. [

REFERENCES

Manski, C. (1988), “Identification of binary response models.” Journal of Econometrics,
83, 729-738. [2]


http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Ma88&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Ma88&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E

Supplementary Material Identification of discrete choice models 11
Topkis, D. (1998), Supermodularity and Complementarity. Princeton University Press,
Princeton. [1]

Ui, T. (2000), “A Shapley value representation of potential games.” Games Economic Be-
havior, 31, 121-135. [7]

Ui, T. (2001), “Robust equilibria of potential games.” Econometrica, 69, 1373-1380. [6]

Ui, T. (2008), “Discrete concavity for potential games.” International Game Theory Re-
view, 10, 137-143. [6]

Co-editor Rosa L. Matzkin handled this manuscript.

Manuscript received 11 September, 2014; final version accepted 9 October, 2016; available on-
line 7 March, 2017.


http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/To98&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/Ui00&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/Ui01&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/Ui08&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/To98&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/Ui00&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/Ui08&rfe_id=urn:sici%2F1759-7323%28201711%298%3A3%2B%3C1%3ASTANOI%3E2.0.CO%3B2-E

	Appendix B: Monotone comparative statics
	First order stochastic dominance

	Appendix C: Nonidentiﬁcation without exclusion restrictions
	Appendix D: Three or more goods and players
	Identiﬁcation results for a general model
	Two binary variables.
	Negative interaction effects.
	Positive or mixed interaction effects.
	Global concavity for discrete domains.

	n-Goods bundle model
	n-Players potential game
	Proof of Theorem D.1
	Identiﬁcation of Fepsilon|W.
	Identiﬁcation of  ( (ui )i<=n,v ).


	References

